Non-small cell lung cancer

Non-small Cell Lung Cancer

Eva Szabo, MD
Chief, Lung and Upper Aerodigestive
Cancer Research Group
Division of Cancer Prevention, NCI

Cancer incidence and mortality

Global Cancer Incidence and Mortality, 1990-2016

Fitzmaurice Clet at .. JAIMA Oncol 2018 epub

US cancer statistics

US Lung Cancer Statistics, 2020

- 228,820 estimated new cases (lung and bronchus)
- 135,720 estimated deaths
- leading cause of cancer deaths
 - greater than breast+prostate+colon
 - death rate per 100,000 decreasing (90.56 in 1990; 67.45 in 2006)
 - Incidence declining in men since mid-1980's, women since mid-2000's
- 20% five year survival
 - 5% in 1950's, 12% in 1970's

26% of all male cancer deaths, 25% of all female cancer deaths

https://www.cancer.org/research/cancer-facts-statistics/all-cancer-facts-figures/cancer-factsfigures-2020.html

Risk factors

Risk Factors

- Tobacco, tobacco (85% lung ca.)
 - Including passive smoking
 - Prior aerodigestive malignancy
 - COPD
- Other exposures
 - Asbestos, radon, polycyclic aromatic hydrocarbons, chromium, nickel, inorganic arsenic – mining, ship building, oil refining
- Genetic predisposition
 - Familial lung cancer Germline mutations EGFR T790M
 - Bell et al., Nat Gen 2005;37:1315
 - 15q24-25.1 nicotinic acetylcholine receptor subunits CHRNA3 and CHRNA5, OR=1.3, attributable risk ~14%
 - Amos et al., Nat Gen 2008;40:616, Hung et al. Nature 2008;452;633, Thorgeirsson et al. Nature 2008;452:638
 - CH3NA3/5 is also susceptibility locus for COPD
 - Pillai et al. PLoS Genet 2009;5:1

Pathology: NSCLC

Pathology: Non-small Cell Lung Cancer

- Adenocarcinoma, inc bronchoalveolar
 - **40%**

- Squamous cell carcinoma
 - -20%
- Large cell carcinoma
 - -15%
- Others (carcinoid, etc.)

Lung carcinogenesis

The Continuum of Lung Carcinogenesis Opportunities for Intervention

Normal → Hyper/Metaplasia → Dysplasia → Early-Late Cancer

Prevention

Early Detection

Treatment

Treatment Strategies for Lung Cancer

- Treatment based on stage:
 - Early stage (Stage I) surgery
 - Early stage (Stage II, IIIA resected)-surgery + adjuvant chemo
 - Regional spread (IIIA/IIIB) combined modality (chemoradiation; +/- surgery for IIIA)
 - Metastatic (IIIB "wet"/IV)— chemotherapy, radiation as needed for local control, occasional resection of isolated metastases
- Small cell lung cancer: chemotherapy (+thoracic radiation for limited stage; prophylactic cranial radiation to prevent brain mets)

Treatment options

Treatment Options for Metastatic NSCLC

- Chemotherapy
 - Platinum doublets, iv
 - Adjuvant, metastatic disease
 - Still a mainstay of treatment
- Targeted therapy
 - For minority of patients with targetable mutations
 - Oral therapies, better tolerance
 - Extended survival
- Immunotherapy
 - Now a definitive role, frontline and second line

Personalizing Therapy for NSCLC

Personalizing Therapy for NSCLC Genetic Abnormalities in Lung Adenocarcinoma

Targetable mutations/gene fusions

- EGFR
 - multiple drugs
- ALK
 - multiple drugs
- ROS1
 - crizotinib
- BRAF-V600E only
 - dabrafenib/trametinib
- RET
 - Experimental drugs (BLU-667)
- NTRK
 - larotrectinib
- MET ex 14 skipping
 - crizotinib
- HER2/Neu exon 20 mutations
 - HER2 antibodies + chemo

*Response rates 50-80%

EGFR and NSCLC

EGFR as a Target for NSCLC

- Epidermal growth factor receptor (EGFR) mutated in ~15% NSCLC
- Oncogenic driver; primarily in non-smokers
- Targeted therapies tyrosine kinase inhibitors (TKIs) highly active
 - 60-80% response rates EGFR-MT disease
 - Progression-free survival 10-14 months (c/w chemo 4-6 months)
 - Median survival 30 vs. 24 months with chemo
 - Maem ando et al N Eng J Med 2010;362 2380
- Multiple TKIs approved for frontline use; 3rd generation TKI (osimertinib) superior
- Mechanisms of resistance well understood (T790M; osimertinib)

Osimertinib

Osimertinib in Chemotherapy-naïve Patients

No prior Rx

Prior frontline TKI but no prior chemo

Mak TS et al. NBJM 2016 Saria J C et al. NBJM 2017

EML4-ALK

EML4-ALK Fusion Gene as a Target for NSCLC

- Identified in 2007
- ~5% NSCLC, mainly never smokers
- Striking response to inhibitor crizotinib- 57% RR, 33% stable disease (FDA approved)
 - Kwak EL et al. NEJM 2010;363:1693
- 2nd line agent approved (ceritinib), 56% RR
 - Shaw AT, et al. NEJM 2014;370:1189
- Multiple mechanisms of resistance

Shaw AT et al., JCO 2009;27:4247

Alectinib

Alectinib for EML4-ALK Translocated NSCLC

- -Progression-free survival 34.8 mths alectinib vs. 10.9 mths crizotinib
- -long term survival better with alectinib

Peters Set al. N Engl JMed 2017;377:829 Camidge DR et al. J Thoras Onsol 2019;14:1233

New Approaches-Immunotherapy

New Approaches - Immunotherapy

- PD-1
 - T-cell co-inhibitory receptor, regulates T-cell activation
 - Main role: to limit activity of T cells in peripheral tissues during inflammatory response to infection and to limit autoimmunity
 - ligands PD-L1 (frequently expressed on tumors) and PD-L2
 - Blockade of PD-L1/PD-1 interaction potentiates immune response (to tumor)

Immunotherapy

New Approaches - Immunotherapy

- Anti-PD-1 antibodies approved for 2nd line NSCLC; nivolumab and pembrolizumab (PD-L1+)
 - ~20% response rate (vs. 10% docetaxel)
 - ~3 month improved overall survival nivolumab c/w docetaxel
 - Long term responses (median duration 12.5 mths with pembro)

Squamous, nivolumab:
-Brahmer J et al. N Engl J Med
2015;373:123-135.

Non-squamous, nivolumab: Borghaei H et al. N Engl J Med 2015;373:1627-1639 Any NSCLC, pembrolizumab: Garon EB et al. N Engl J Med 2015;372:2018-2028

Clinical approach

Approach to the Patient with Metastatic NSCLC

NSCLC mortality

↓ Mortality from NSCLC with Improved Therapy

Mortality decreased faster than incidence

- 2013-2016 -Mortality
 16.3% annually (men)
- 2008-2016 -Incidence \$\infty\$3.1% annually (men)
- Lung cancer specific survival improved from 26% to 35% from 2001 to 2016
- Similar in women, across all races/ethnic groups
- For SCLC, decreased mortality was same as decreased incidence
- Conclusion: treatment advances (esp. targeted therapies) responsible

Approaches to reducing cancer morbidity and mortality

- Prevention (primary, secondary, tertiary)
- Early detection

Better therapeutics

Smoking Cessation and Lung Cancer

Effect of Smoking Cessation on Lung Cancer Death Lung Health Study, 14.5 yr F/U

Lung carcinogenesis

The Continuum of Lung Carcinogenesis

Opportunities for Intervention

Normal → Hyper/Metaplasia → Dysplasia → Early-Late Cancer

Prevention

Early Detection

Treatment

Cancer Chemoprevention

The use of natural or synthetic agents to suppress or reverse carcinogenesis

- Regress existing neoplastic lesions (treat intraepithelial neoplasia)
- Prevent development of new neoplastic lesions (preneoplastic and cancer)
- Suppress recurrence of neoplastic lesions

Lung Cancer Prevention

Rationale for Lung Cancer Prevention

- Metastatic cancer is rarely curable
 - US lung cancer 5 yr survival is ~15% (5% 1950's, 13% 1970's)
- Cancer is preventable
 - P1, STAR breast cancer prevention trials with tamoxifen and raloxifene
 - Fisher B et al., JNCI 1998;190:1371; Vogel, VG et al., JAMA 2006;295:2727
 - Multiple animal studies with multiple agents
- Long preclinical phase with increasing histologic and molecular abnormalities, identifiable populations at risk

Lung premalignancy

Evolution of Lung Premalignancy

Squamous (central)

Adenomatous (peripheral)

Bronchial dysplasia

Squamous Cell Carcinoma Precursor: Bronchial Dysplasia

- Progression to cancer based on bronchoscopic dx, median 2-3 yr f/u (Bota et al., Am J Respir Crit Care Med 2001:164;1688; Vennans et al., Chest 2000:117;1572; Breuer et al. Clin Cancer Res 2005:11;53 7)
 - Metaplasia: 37-42% regress, 2-9% CIS/cancer (at 4-59 mths)
 - Mild/moderate dysplasia: 37-64% regress, 9% CIS/cancer (at 7-57 mths)
 - Severe dysplasia: 41-52% regress, 32% CIS/cancer (1-32 mths)
 - Carcinoma in situ: 56% progress at site (44% also had severe dysplasia or CIS elsewhere)
- 164 pts. with low or high-grade lesions (Van Boerdonk et al., Am J Respir Crit Care Med 2015;192: 1483)
 - 33.5% developed invasive cancer, median 16.5 mths
 - 41% cancers developed from abnormal site, 59% from other sites (central or peripheral)
 - High grade lesions assoc with cancer; COPD and prior hx lung ca assoc with OS
- Bronchial dysplasia both precursor and risk marker for abnormal field

Atypical adenomatous hyperplasia

Adenocarcinoma Precursor: Atypical Adenomatous Hyperplasia (AAH)

- Natural history not well understood
- Localized ground glass opacities on CT:
 - AAH 25%; bronchoalveolar ca 50%; invasive adenoca 10%; fibrosis 15%
 - Nakajima et al., J ComputAssist Tomogr 2002;26:323
 - AAH 63%; bronchoalveolar ca 34%; scar 3%;
 - Ohtsuka et al., Eur J Cardio-Thor Surg 2006;30:160

Non-solid nodules

Non-Solid Nodules – Natural History

- Prospective trial, 795 patients with 1229 subsolid nodules (GGNs, <u><</u>3cm, solid component <u><</u>5 mm)
 - f/u 4.3±2.5 years
 - 1046 pure GGN → 5.4% became part solid
 - 81 heterogeneous GGN → 19.8% became part solid
 - Resected nodules (in 80 patients)
 - 35/997 pure GGNs (9 MIA, 21 AIS, 5 AAH)
 - 7/78 heterogeneous GGNs (5 MIA, 2 AIS)
 - 49/174 part solidGGNs (12 invasive, 26 MIA, 10 AIS, 1 AAH)
 - 1% of all nodules became invasive cancer (all were part solid)
 - 3.3% became MIA, 2.7% AIS, 0.5% AAH

Targeting inflammation

Targeting Inflammation for Lung Cancer Prevention: Rationale

- Animal data showing role for steroids in cancer prevention
 - 1970's skin
 - Early 1990's lung (oral steroids)
 - Late 1990's lung (inhaled steroids)
- Epidemiology/Human data
 - Mainly negative (but studies of short exposure duration)
 - VA cohort with COPD (n=10,474) HR 0.39 (95% CI, 0.16-0.96)
 - Parimon T et al., AJRCCM 175:712, 2007

Phase IIb budesonide trial

DCP Phase IIb Trial of Inhaled Budesonide in Bronchial Dysplasia

112 smokers with dysplasia by bronchoscopy

Helical CT

#Screened (sputum): 1040

Cancers detected: 13

Budesonide vs. Placebox 6mths

Bronch, Spiral CT)

1º Endpoint: bronchial dysplasia (#sites/grade)

2º Endpoints: multiple biomarkers

Bronchial dysplasia

Phase IIb Trial of Inhaled Budesonide in Bronchial Dysplasia

- Bronchial dysplasia no effect of 6 mth Rx
- CT-detected lung nodules 27% vs. 12% resolved (p=0.024)

Chemoprevention trialPhase IIb Trial

Peripheral Lung Carcinogenesis Trial Design Phase IIb Budesonide Chemoprevention Trial

202 participants with persistent LD-CT-detected peripheral nodules

Randomize

inhaled budesonide vs. placebo x 1 year

Primary endpoint: shrinkage of lung nodules

Chemoprevention Trial

Phase IIb Budesonide Chemoprevention Trial Lesion Specific Analysis

Percent changes in Maximum Diameters at 12 months

5-yr f/u, non-solid

p = .029

-Overall response negative, but trend toward regression in nonsolid lesions (putative precursors of adenocarcinoma)

> Veronesi et al., Cancer Prev Res 2011;4:34-42 Veronesi et al., Ann Oncol 2015;26:1025-30

Aspirin and Mortality

Effect of Aspirin on Lung Cancer Mortality

-Rothwell et al., Lancet 2011;377:31

-individual patient data from trials of ASA vs. none

-lung:

<u>f/u</u>	0-10 yrs	<u>0-20 yrs</u>
HR	0.68	0.71
(0.50-0.92, p=0.01)		(0.58-0.89, p=0.002)

- -adenocarcinoma only
- -benefit only after 5 yrs

Phase II Trial

A Randomized Phase II Trial of Low Dose Aspirin versus Placebo in High-Risk Individuals with CT Screen Detected Subsolid Lung Nodules Pls: Giulia Veronesi, MD and Bernardo Bonanni, MD; IEO

1º Endpoint: #/Size semisolid lung nodules

2º Endpoints: COX/LOX urinary metabolites (hs-CRP, PGEM, LTE4), miRNA signature, nodule-based endpoints

Accrual as of October 15, 2015: 47 participants

Aspirin trial

Phase II Trial of Low Dose Aspirin Trial

-98 participants
randomized
-no difference in nodule
size, new nodules
-no differences by sex,
smoking status
-underpowered to detect
differences in new
cancers

Biomarkers

Biomarker Aspirin Chemoprevention Trials

Linda Garland, University of Arizona

- 1° Endpoint: smoking gene expression signature (nasal epithelium)
- 2° Endpoint: PI3K gene expression signature, lung cancer gene expression Signature, COX/LOX urinary metabolites (PGEM, LTE4)

Minimal effects

Minimal Effects of Continuous vs. Intermittent Aspirin on Nasal Smoking Gene Signature Score

Myo-Inositol

myo-Inositol

- Glucose isomer
- Source of several second messengers & signaling molecules
- Dietary sources (grains, beans, fruits, rice)
- Studied in psychiatric conditions (+/-), diabetic neuropathy(+/-), polycystic ovary syndrome (+)

Phase I Study of myo-Inositol

Phase I Study of myo-Inositol in Bronchial Dysplasia

- Inhibits B[a]P carcinogenesis in mice (53%);
 combination with budesonide ↑↑
- но ОН

- Phase I study (26 participants)
 - tolerable 18 g/d
 - 91% vs. 48% regression dysplasia, P=0.014 (10 participants)

Table 5. Changes in pathologic grades of bronchial biopsy samples at baseline and after 3 months of *myo*-inositol (18 g): Lesion-specific analysis

Pathologic grades of bronchial biopsies at baseline	Status after 3 months of treatment			
	N	Stable	Regression*	Progression †
Placebo group (from ref. 18)				
Normal/hyperplasia/metaplasia	256	219	0	37
Mild dysplasia	134	72	62	0
Moderate/severe dysplasia	13	5	8	0
myo-Inositol group				
Normal/hyperplasia/metaplasia	38	36	0	2
Mild dysplasia	10	1	9	0
Moderate/severe dysplasia	1	0	1	0

PI3K pathway genes**Phase IIB myo- Inositol Trial**

Increased Expression of Genes Induced by PI3K Pathway Activation in the Airway of Smokers with Dysplasia

- -PI3K pathway is activated in smokers with dysplasia in airway p<0.001
- -Myo-inositol inhibited PI3K activation in normal bronchial airways in smokers with regression of dysplasia (p=0.04)

Myo-Inositol in Bronchial Dysplasia

Phase IIb Study of myo-Inositol in Bronchial Dysplasia

Trial overview

- Age 45-74 years; ≥30 pack yr smoking; ≥1 dysplastic lesion
- myo-inositol 9g bid vs. placebo x 6 mths
- 1° endpoint:
 - △ in dysplasia at 6 mths, per participant
- 2° endpoints:
 - -Ki-67
 - -blood/BAL biomarkers
 - -PI3K airway gene signature

Results (1º endpoint)

- 85 pts randomized, 74 evaluable for efficacy (myoinositol n=38; placebo n=36)
- CR rate 26.3% vs 13.9%; PD 47.4% vs 33.3% (myo, placebo), p=0.76
- 2° endpt: \(\text{AKT activation in complete responders only} \)
- 2° endpt: ↓IL-6 in BAL

Lam S et al. Cancer Prev Res 2016;9:906

Targeting inflammation

Targeting Inflammation/IL-1β

CANTOS Trial Secondary Analysis

- Canakinumab Anti-inflammatory Thrombosis Outcomes Study (CANTOS)
 - 10,061 patients with atherosclerosis, hsCRP≥2 mg/L
 - Dose: 50 mg, 150 mg, or 300 mg sc q3mths vs placebo
 - Median f/u 3.7 yrs

Results:

- Dose-dependent IL-6 reduction 25-43% (p<0.0001)
- Total cancer mortality: HR, 0.49 [95%CI, 0.31-0.75]-300 mg
- Lung cancer mortality: HR, 0.23 [95%CI, 0.10-0.54]-300 mg
- Lung cancer incidence: HR, 0.33/0.61 (p<0.001)-300/150 mg
- No difference in overall survival (\(\gamma\) infection/sepsis)

Note: FDA declined to approve canakinumab for CV indication

Lung Carcinogenesis

The Continuum of Lung Carcinogenesis Opportunities for Intervention

Normal → Hyper/Metaplasia → Dysplasia → Early-Late Cancer

Prevention

Early Detection

Treatment

Lung Cancer Screening

Issues in Lung Cancer Screening

- Lead-time bias = earlier diagnosis but no postponement of death (survival appears longer)
- Length bias = diagnosis of more indolent disease with longer preclinical phase (better prognosis, better outcome)
- Overdiagnosis = identification of clinically unimportant lesions that would not be diagnosed otherwise
- Morbidity/mortality/cost of screening and subsequent work-up

PLCO Trial

PLCO CXR Randomized Trial - Mortality

154,901 participants, PA CXR vs. usual care x 4 screens, 13 yr f/u

NLST (National Lung Screening Trial)

NLST design

- 53,454 smokers (current and former)
- 30 pack-yr smoking hx; quit ≤15 yrs ago
- Age 55-74
- Helical CT vs. chest X-ray (prevalence, then x2)

NLST results

- CT 24.2% 'positive' tests, 354 lung cancer deaths
- CXR 6.9% 'positive' tests, 442 lung cancer deaths
- 20.0% reduction in lung cancer mortality
- 6.7% reduction in all cause mortality

Lung Cancer and Deaths

Cumulative Lung Cancers and Deaths from Lung Cancer

NLST Research Team N Engl J Med 2011;365:395-409

CT screening

NELSON CT Screening Trial

- 13,195 men and 2594 women
- age 50-74
- Screening baseline, yr 1, yr 3, yr 5.5
- Volumetric analysis
- 10 yr follow-up
- Men: RR=0.76
- Women: RR=0.67

Moving forward

How do we move forward? What are the opportunities?

- Understand the biology and natural history of carcinogenesis
 - Understanding natural history of premalignancy TCGA of premalignancy (PCA)
 - Who progresses, who doesn't?
 - Target deregulated processes driving carcinogenesis (not just mutations)
 - Harness the immune response
- Improved clinical trials e.g., sample the field using 'omic' technologies
 - To detect drug effects on deregulated pathways in a short time frame
 - Role of liquid biopsy?
- Focus on at-risk (molecularly?) homogeneous cohorts
- Consider the entire person, at risk for multiple cancers and chronic diseases
- Multiple early phase trial designs to build a "body of evidence" to justify phase III

Bronchial Dysplasia

Progression vs. Regression of Premalignant Lesions: Bronchial Dysplasia

- Persistent bronchial dysplasia is associated with sq cell ca.
 - multiple follow-ups with high grade dysplasia
- Persistence or progression to high grade 7.8-fold increased risk of inv sq cell
- Molecular analyses pending

Summary

Summary

- Tremendous progress has been made in understanding lung carcinogenesis
 - Pathologic classification oversimplifies molecular complexity
 - Heterogeneity in tumors and premalignant lesions complicates efforts to intervene
 - Precision medicine applicable to significant (but small) subset of advanced stage patients, increased survival
 - Early days of immunotherapy prolonged survival in small subset of patients
 - Applications to prevention not yet clear
 - Early detection with helical CT decreased lung cancer mortality
 - New targets and tools available for chemoprevention research

"An ounce of prevention is worth a pound of cure" -Benjamin Franklin

Acknowledgments

Acknowledgments

- DCP Phase II Consortia Program
- Stephen Lam, British Columbia Cancer Agency
- Giulia Veronesi, Humanitas Cancer Institute
- European Institute of Oncology Chemoprevention Group
- Ron Lubet, DCP CADRG
- Avrum Spira, Boston University